Volume 7, Issue 2, February 2018,

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

LORENTZIAN PARA-SASAKIAN MANIFOLD

Nanditha S Matad New Horizon College, Marathalli, Bangalore-560103 Karnataka, INDIA.

Abstract: In this paper work is done on some properties of the contact CR-submanifolds. Lorentzian para-Sasakian manifolds are D-totally geodesic and D^{\perp} -totally geodesic.

Classiftcation: 53C15, 53C21, 53C25, 53C50

 $\label{eq:Keywords} \textbf{Key words}: Contact CR-submanifold, Lorentzian para-Sasakian manifold, D-totally geodesic, D^{\bot}-totally geodesic,$

1 Introduction

In 1978, Bejancu introduced the notion of C.R. Submanifold of a Kaehler manifold[1],Since then several works are going on C.R. Submanifolds. Matsumoto[2] introduced the idea of Lorentzian para- contact structure and studied its several properties. Later Mihai and Matsumoto [3] introduced the same notion independently and they obtained several results on this manifolds. Lorentzian para-Sasakian manifold have also been studied by U.C.De,A.A.Shaikh and Mihai[4] and Venkatesh, C.S.Bagewadi and Pradeep Kumar K.T.[5]. Recently Ahmet yildiz, U.C.De and Erhan Ata[6] worked on Lorentzian para-Sasakian manifolds and introduced the new concept called generalized η -Einstien manifold in a Lorentzian para-Sasakian manifolds.

In this paper In this paper work is done on some properties of the contact CR-submanifolds. Lorentzian para-Sasakian manifolds are D-totally geodesic and D^{\perp} -totally geodesic.

Volume 7, Issue 2, February 2018,

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

2. Preliminaries

Let M be an (2n+1)-dimensional almost contact metric manifold with indefinite almost contact metric structure (ϕ, ξ, η, g) then they satisfies

2.1.
$$\phi^{2} = -\mathbf{I} + \eta \otimes \xi,$$

$$\eta(\xi) = 1, \quad \phi \xi = 0, \eta \circ \phi = 0,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y),$$

$$g(\phi X, Y) = -g(X, \phi Y),$$

$$g(X, \xi) = \eta(X),$$

For all vector fields X,Y on M.

An almost metric structure (ϕ,ξ,η,g) is called an Lorentzian para-Sasakian manifold if

2.4
$$(\tilde{\nabla} X \varphi) Y = g(X, Y) \xi + \eta(Y) X + 2\eta(X) \eta(Y) \xi,$$

Where $\tilde{\nabla}$ is the Levi-Civita (L-C) connection for a semi-Riemannian metric g. Also we have

2.5
$$\tilde{\nabla} X \xi = \phi X$$
, Where $X \epsilon$ TM.

The Gauss and Weingarten formulae are as follows

2.6
$$\tilde{\nabla}XY = \nabla_XY + h(X, Y),$$
2.7
$$\nabla_X N = -A_NX + \nabla_Y^{\perp}N,$$

for any $X,Y \in TM$ and $N \in T^{\perp}M$, where ∇^{\perp} is the connection on the normal bundle $T^{\perp}M$, h is the second fundamental form and A_N is the Weingarten map associated with N via

2.8
$$g(A_NX, Y) = g(h(X, Y), N).$$

The equation of Gauss is given by

Volume 7, Issue 2, February 2018,

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

2.9
$$R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W)) - g(h(X, W), h(Y, Z)),$$

where \tilde{R} (resp. R) is the curvature tensor of \tilde{M} (resp. M). For any $x \in M$, $X_x \in T_x M$ and $N \in T^{\perp}M$, we write,

2.10
$$X = PX + QX,$$
2.11
$$\varphi N = BN + CN,$$

where PX (resp. BN) denotes the tangential part of X (resp. ϕ N) and QX (resp. CN) denotes the normal part of X (resp. ϕ N) respectively.

Using (2.6), (2.7), (2.10), (2.11) in (2.4) after a brief calculation we obtain on comparing the horizontal, vertical and normal parts,

2.12.
$$P\nabla_X\phi PY - PA_{\phi QY}X = \phi P\nabla_XY + g(PX,Y)\xi + \eta(Y)PX + 2\eta(Y)\eta(X),$$

2.13
$$Q\nabla_X \varphi PY + QA_{QQY}X = Bh(X,Y) + g(QX,Y)\xi + \eta(Y)QX,$$

$$2.14 \hspace{1cm} h(\!X\!, \phi PY) + \hspace{0.1cm} \nabla^{\perp} \phi QY = \phi Q \hspace{0.1cm} \boldsymbol{\nabla}_{\boldsymbol{\chi}} Y + Ch(X,Y).$$

From (2.5) we have

2.15
$$\nabla_{X}\xi = \phi PX,$$

2.16
$$h(X, \xi) = \phi QX$$
,

Also we have

2.17
$$h(X,\xi) = 0 \quad \text{if} \quad X \in D,$$

2.18
$$\nabla_X \xi = 0,$$

2.19
$$h(\xi, \xi) = 0$$
,

$$2.20 \qquad \qquad A_N \xi \in D^{\perp} \ .$$

Volume 7, Issue 2, February 2018,

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

3. D-totally geodesic and D¹-totally geodesic contact CR-Submanifolds of Lorentzian para-Sasakian manifold

Definition: A contact CR-submanifold M of an Lorentzian para-Sasakian manifold \tilde{M} is called D-totally geodesic (resp. D^{\perp} -totally geodesic) if h(X, Y) = 0, $\forall X, Y \in D$ (resp. $X, Y \in D^{\perp}$).

Proposition 1 Let M be a contact CR-submanifold of an Lorentzian para-Sasakian manifold. Then M is a D-totally geodesic if and only if $A_NX \subseteq D^{\perp}$ for each $X \subseteq D$ and N a normal vector field to M.

Proof: Let M be D-totally geodesic. Then from (2.8) we get

$$g(h(X, Y), N) = g(A_N X, Y) = 0.$$

So if

$$\begin{array}{ll} h(X,Y)\!=\! \ o, \ \forall \ X,Y \!\in\! \ D \\ i.e., \qquad A_{\scriptscriptstyle N}\!X \!\in\! \ D^{\scriptscriptstyle \perp}. \end{array}$$

Conversely, let $A_NX \in D^{\perp}$. Then for $X, Y \in D$ we can obtain,

$$g(A_NX, Y) = o = g(h(X, Y), N),$$

i.e., $h(X, Y) = o$

 \forall X, Y \in D, which implies that M is D-totally geodesic. Thus our proof is complete.

Proposition 2: Let M be a contact CR-submanifold of Lorentzian para-Sasakian manifold \tilde{M} . Then M is D^{\perp} -totally geodesic if and only if $A_NX \in D$ for each $X \in D^{\perp}$ and N a normal vector field to M.

Proof: The proof follows immediately from the above proposition. Concerning the integrability of the horizontal distribution D and vertical

Volume 7, Issue 2, February 2018,

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

distribution D^{\perp} on M, we can state the following theorem :

Theorem: Let M be a contact CR-submanifold of an Lorentzian para-Sasakian manifold. If M is ξ -horizontal, then the distribution D is integrable iff

3.1
$$h(X, \varphi Y) = h(\varphi X, Y),$$

 $\forall X, Y \in D$. If M is ξ -vertical then the distribution D^{\perp} is integrable iff

3.2
$$A_{\phi X}Y - A_{\phi Y}X = \eta(Y)X - \eta(X)Y, \quad \forall X, Y \in D^{\perp}.$$

Proof: If M is ξ -horizontal, then using (2.14) we get,

$$h(X, \varphi PY) = \varphi Q \nabla_X Y + Ch(X, Y)$$

$$\forall X, Y \in D$$
. Therefore $[X, Y] \in D$ iff $h(X, \varphi Y) = h(Y, \varphi X)$

Hence, if M is ξ -horizontal, $[X, Y] \in D$ iff $h(X, \varphi Y) = h(\varphi X, Y)$.

Again using (2.14) we get,

$$\nabla^{\perp} \phi Y = Ch(X, Y) + \phi Q \nabla_X Y$$
 for $X, Y \in D^{\perp}$.

After some calculations we see that

3.3.
$$\begin{split} \tilde{\nabla}_X \phi Y &= g(X,Y)\xi + \eta(Y)X + 2\eta(Y)\eta(X)\xi + \phi P \nabla_X Y \\ &+ \phi Q \nabla_X Y + Bh(X,Y) + Ch(X,Y). \end{split}$$

Again from (2.7) and (3.3) we get,

3.4
$$\nabla_X^{\perp} \phi Y = A_{\phi Y} X + g(X,Y) \xi + 2\eta(Y)\eta(X)\xi + \phi P \nabla_X Y + \phi Q \nabla_X Y + Bh(X,Y) + Ch(X,Y).$$

for X, Y \in D^{\perp}. From (3.4) and (3.3) we can write,

$$3.5 \qquad \qquad \phi P \, \nabla_X Y = -A_{\phi Y} X - g(X,Y) \xi - \eta(Y) X - 2 \eta(Y) \eta(X) \xi - Bh(X,Y). \label{eq:posterior}$$

Interchanging X and Y in (3.5) we get,

$$3.6 \qquad \quad \phi P \, \nabla_Y X = -A_{\phi X} Y - g(X,Y) \xi - \eta(X) Y - 2 \eta(Y) \eta(X) \xi - Bh(X,Y). \label{eq:posterior}$$

Substracting (3.5) from (3.6) we have,

$$\phi P[X,Y] = -A_{\phi Y}X + A_{\phi X}Y - \eta(Y)X + \eta(X)Y.$$

Volume 7, Issue 2, February 2018,

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Now since M is ξ -vertical, $[X, Y] \in D^{\perp}$ iff,

$$A_{\sigma X}Y - A_{\sigma Y}X = \eta(Y)X - \eta(X)Y.$$

So the proof is complete.

References

- [1] A.Bejancu, 'CR-Submanifolds of a Kahler manifold' ,Proc,Am,Math,Soc, 69 (1978) PP 135-142.
- [2] K. Matsumoto, 'On Lorentzian para-Contact manifold', Bull, of Yamagata Univ, Nat, Sci, Vol 12(1989), PP151-156.
- [3] K. Matsumoto and I Mihai, 'On a certain, transformation in a Lorentzian para-sasakian manifold', Tensor, Vol47, No.2, (1988), PP 189-197.
- [4] I.Mihai, A.A.Shaikh and U.C.De, 'On Lorentzian para-Contact manifold', Rendiconti del Seminario Matematico di messina, no.3,(1999) PP 149-158.
- [5] Venkatesha, C.S. Bagewadi and K.T. Pradeep kumar 'Some results on Lorentzian para-Contact manifold', IRSN Geometry Vol. 2011. Artical I.D. 161523. Hindwai Publishers.
- [6] A.Yildiz, U.C..De and Erhan Ata, 'On a type of Lorentzian para-Contact manifold', Math Reports 16 (66),1 (2014), PP 61-67.
- [7] Blair.D.E., Riemannian Geometry of Contact and Symplectic Manifold, Boston, Berlin, (2002).
- [8] Barnali Laha, Bandana Das, Arindam.B. 'Contact CR-submanifolds of an indefinite Lorentzian para-Contact manifold', Acta Univ Sapientiae, Mathematica, 5, 2 (2013) 157-168.
